Ensuring long-term well integrity, the ability of a well to provide effective barriers for containment of well fluids and pressures throughout the well’s lifecycle, is a vital part of well design and construction. Our wells are designed to maintain well integrity throughout their lifecycle. Design considerations begin with initial site selection and end with permanent well closure. We consider region-specific geological, environmental and operational requirements for each well. While variability exists in construction, we design every well to maintain its integrity throughout its life.

Well Design and Construction

We engineer wells for specific geology and purpose with appropriate reviews and approvals. Well casing, the steel pipe cemented into the ground at various stages during the drilling of a well, provides the primary layer of protection between the oil and gas being produced and the rock formations transected by the well. A typical well includes multiple layers of casing and cement, each designed with a specific purpose:

1. **Conductor Casing** is typically installed prior to bringing in the drilling rig. The conductor casing is used to stabilize the ground near the surface and to provide a conduit for drilling fluids to circulate back to the rig tanks.

2. **Surface Casing** is installed through the conductor casing and cemented in place from the surface to depths below freshwater levels as required by local regulation and company guidelines. We use air- or freshwater-based fluids to prevent contamination when drilling through freshwater zones. The primary purposes of surface casing are to isolate and protect freshwater from fluids in the wellbore and to provide a strong foundation for the wellhead and rig blowout prevention equipment.

3. **Intermediate Casing** is sometimes used to facilitate subsequent drilling depending on variances in wellbore stability, rock strength or formation pressure.

4. **Production Casing** is installed last. The primary purposes of production casing are to provide a conduit for the production of oil and gas. It also serves as an additional barrier to protect freshwater and to contain the fluids and pressures required for subsequent completions activities, such as hydraulic fracturing.

Cementing is the process of placing a cement sheath around casing strings in a well. It is a critical part of well construction and is a fully designed and engineered process. Cement fills the space between the well casing and the drilled wellbore, isolating different subsurface zones and providing structural support for the well. Cement is fundamental in maintaining integrity throughout the life of the well and helps protect casing from potential corrosion. ConocoPhillips follows American Petroleum Institute cement standards to ensure sound well design, construction and well integrity. Given the local variability of the subsurface environments where our company operates, cements are carefully designed to meet site specific conditions. Selected cements are laboratory tested in advance to ensure they meet well design and regulatory requirements.
Active Production
Our commitment to safe and environmentally responsible operations continues throughout the life of each well. Our well operations meet or exceed regulatory requirements and statutes. Our internal technical and safety guidelines are based upon global best practices and are designed to protect people, water, land and air over the well’s 20- to 30-year life cycle. Various types of mechanical integrity tests are used to assess well integrity and seals over the productive life of the well. Operating pressure limits are established and casing strings are monitored to ensure that well integrity concerns, such as leaks, are quickly detected and appropriately addressed. Alarms and relief systems are regularly tested, and personnel are trained to properly operate wells and onsite facilities. We maintain safe work practices to protect the environment, our employees, our contractors and the communities in which we operate and engage with local communities to understand their issues.

Well Plugging and Surface Restoration
At the end of the productive life of a well, we employ stringent well site-closure requirements to plug a well. Plugging includes setting cement plugs and/or mechanical barriers in the wellbore to eliminate potential paths to the surface and to isolate oil and natural gas from freshwater resources.

Our wells are properly closed in accordance with regulatory requirements and internal guidelines that ensure long-term environmental protection. We submit a well plugging plan for review and approval by the controlling regulatory agency. Documentation to preserve physical location, well construction and well closure details for future reference is also filed with government authorities. In the U.S., regulations have specific provisions for well plugging as well as documentation of the actual plugging operations. These documents include the depth intervals that were cemented as well as the materials used during this final stage of a well’s life.

We meet our commitments to restore surface locations as close as possible to the original condition or to the owner’s preference in compliance with all regulations and contractual obligations, including restoring the land to its natural contour and reseeding with native species.

FREQUENTLY ASKED QUESTIONS

Are wells that are hydraulically fractured more likely to leak and contaminate freshwater resources?

No. Hydraulic fracturing is a safe and proven technique that has helped develop oil and natural gas resources for more than 60 years. We are confident in our ability to safely and responsibly develop oil and natural gas resources. We design our wells with multiple barriers to isolate and protect groundwater from hydraulic fracturing fluids and produced well fluids. Personnel at the wellsite continually monitor fluid injection rates and pressures throughout the hydraulic fracturing process to maintain well integrity.

What about the claim that eventually almost all oil and gas wells will experience compromised integrity and fail?

When designing and constructing a well, operators typically design wells with multiple layers of casing and cement, creating redundant safeguards so that the potential failure of one barrier does not result in compromised wellbore integrity. Well failure refers to the failure of any barrier element—a casing string, cement, a seal in the wellhead, etc.—within a multiple barrier system. Failure to pass a barrier test does not mean that a leak to the surrounding environment occurred or will occur. Rigorous well testing and reporting helps us identify potential problems and implement solutions to continuously provide safe operations and oversee environmental protection. Any well failure is reported to the appropriate regulatory agency.

For more information: www.powerincooperation.com